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Line failure cascading in power networks is a complex process that involves direct and indirect interactions between
lines’ states. We consider the inverse problem of learning statistical models to find the sparse interaction graph from
the pairwise statistics collected from line failures data in the steady states and over time. We show that the weighted
l1-regularized pairwise maximum entropy models successfully capture pairwise and indirect higher-order interactions
undistinguished by observing the pairwise statistics. The learned models reveal asymmetric, strongly positive, and
negative interactions between the network’s different lines’ states. We evaluate the predictive performance of models
over independent trajectories of failure unfolding in the network. The static model captures the failures’ interactions
by maximizing the log-likelihood of observing each link state conditioned to other links’ states near the steady states.
We use the learned interactions to reconstruct the network’s steady states using the Glauber dynamics, predicting the
cascade size distribution, inferring the co-susceptible line groups, and comparing the results against the data. The
dynamic interaction model is learned by maximizing the log-likelihood of the network’s state in state trajectories and
can successfully predict the network state for failure propagation trajectories after an initial failure.

Line failure cascading in power grid networks involves
higher-order interactions causing complex dynamics in
failure cascading. The pairwise line failure interaction
analysis indicates to what extent the failure of one line
may lead to overload or failure of another line and has
been studied in deterministic and stochastic frameworks.
Here, we show that the cascading process involves higher-
order interactions of groups of more than two lines whose
simultaneous states affect process dynamics. Nevertheless,
direct data collection and analysis of all possible combina-
tions of lines’ states in different group sizes is impossible
due to the explosive number of groups. Therefore, we use
machine learning techniques and prior knowledge to find
a statistical model which captures direct and possible in-
direct higher-order interactions in the complex dynamics
of failure cascading. We use the learned models to infer
the cascade behavior and compare the results against the
data.

I. INTRODUCTION

The failure cascading process is a high-risk event in net-
worked systems in which the overall cost, e.g., the number of
shutdown users in the power grid, increases in the same order
as the probability of the event decreases. In networked sys-
tems, the direct and indirect interactions between the system
components induce correlations and may amplify or attenu-
ate the initial disturbance. The amplification1 or attenuation2

effects of network structure after especially correlated fluctu-
ations reflect the underlying interplay between the structure
and dynamics of the complex networked systems.

In power networks, lines’ failure cascading are correlated in
a non-trivial pattern, rarely leading to large blackouts accord-

ing to the historical data3. The origins of cascading process
in power networks are related to the self-organized critical-
ity phenomenon in complex systems in4,5 and, more recently,
are linked to the power-law nature of city inhabitants6. Some
other studies, instead of finding what gives rise to the phe-
nomenon, focus on finding how the cascade process relates to
the network’s structure and how it unfolds in the network in
a deterministic7 or stochastic manner8. These studies link the
failure unfolding process to the pairwise line interaction. The
pairwise line interaction refers to the mutual impact that a pair
of lines has on each other after a failure of one of them.

Provided that the network remains connected, the authors
in7 use the deterministic pairwise line outage redistribution
factors (LODFs) and matrix-tree theorem to analyze how fail-
ure propagates through spanning forests in the network graph.
However, the network partitions into some islands in many
failure cascading scenarios. On the other hand, a class of data-
driven approaches rely on analyzing positive pairwise line in-
teractions statistics after different initial failure scenarios8,9.
As we shall discuss, positive pairwise statistics like pairwise
correlations do not capture some crucial interactions, and neg-
ative interactions play a crucial role in cascading process.

Another class of data-driven approaches considers multiple
line failure interactions in the consecutive generation of fail-
ure cascading in the networks by analyzing how a group of
line failures may affect the failure of a specific component.
In10 by assuming a memory between consecutive generations,
the evolution of interactions during the cascade unfolding is
analyzed, and an interaction matrix for two consecutive gener-
ations is derived. In11, the set of lines which are failed in a spe-
cific generation of cascading data are considered as the states
of a Markov chain, and the transitions between these states
are estimated. The Markov states can transit to the consid-
ered stopping state that terminates the cascade. The simulated
cascades using the developed models in these works capture
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the distribution of the number of failures in the original data.
See12 for a review on interaction analysis of failure cascading
in power networks. In this work, we use different methods to
find the line failure interactions near the cascades’ final states
and, over time, use the data. We use machine learning tools
and pair-wise statistics to capture the interaction between a
possible group of lines without relying on specific assump-
tions about the interaction between cascading generations or
enumerating the Markov states.

Although finding the pairwise statistics is straightforward
and computationally tractable even for large networks, they
are not sufficient per se if higher-order interactions exist. De-
spite the pairwise interaction, in higher-order interactions, the
simultaneous states of more than two lines are involved in
determining the system dynamics. Higher-order interactions
may substantially affect the dynamics of complex networked
systems13. The failure cascading process in power grid net-
works involves higher-order interactions, as we discussed in
more detail in subsection Ref sec: higher-order. However,
collecting data for possible higher-order interactions is not
straightforward, if even possible, due to the explosive num-
ber of possible combinations. Therefore, there is an inter-
est in finding the possible higher-order interaction using or-
dinary pairwise statistics. Pairwise models assume that the re-
sponse of each element in the networked system results from
its pairwise interactions with some not-necessarily local ele-
ments. The efficiency of the pairwise statistical model to cap-
ture higher-order correlations was first observed in the study
of strongly correlated network states of neural activity dy-
namics in14. Also, Ref.15 shows that the Pseudo-likelihood
and approximate maximum entropy statistical model can suc-
cessfully recover the interaction topology even from a limited
amount of data.

In this paper, we consider the inverse problem of learn-
ing the interaction graph from the pairwise statistics collected
from data of line failures in the steady states and over time.
After presenting the system model in Section II, we discuss
that the failure cascading process in power grid networks in-
volves higher-order interactions undistinguished by observing
the pairwise correlation data in Section III. Next, we aim to
learn statistical models that capture the latent higher-order line
failure interactions. The models use ordinary pairwise statis-
tics data to successfully predict complex system responses
like the cascade size statistics and consecutive network states.
We find static and dynamic interaction graphs in Section IV
and Section V. The static interaction graph helps us esti-
mate the cascade size distribution and identify lines that fail
together. On the other hand, the time series analysis helps find
how the failure unfolds in the network.

II. MODELS AND DATA SET PREPARATION

A. System model

Consider a power grid network with N = {1, . . . ,n} buses
or nodes and E ⊂ N ×N , |E | = L, transmission lines or
edges with the corresponding graph G = (N ,E ). In the

normal operation, the network facilitates the electricity flow
distribution from generator buses to load buses meeting the
underlying system’s physics (Ohm’s rule, flow conservation
rule, and power balance) and its constraints, i.e., the maximum
generation power of generators and the maximum capacity of
lines.

Ignoring the lines’ resistances, the susceptance of line e =
(i, j) ∈ E between bus i and j is given by bi j = 1

xi j
where

xi j is the line’s reactance. Let BL×L = diag(be : e ∈ E )
and Cn×L denote, respectively, the susceptance and the node-
link incidence matrix of G assuming an arbitrary orientation
for each link. In this paper, all matrices and vectors are,
respectively, denoted by bold uppercase and bold lowercase
letters. The power injection or demand at bus i is pi and
pn×1 = (p1, . . . , pn) is the corresponding vector. fe is the
flow on link e and fL×1 = ( f1, . . . , fL) is the flow vector of
the network. Assume that the voltage magnitude of all buses
is normalized to 1 and the unknown voltage phase of bus i
is denoted by θi. In the linear model, applying Ohm’s law
for link e = (i, j) we have fe = (θi−θ j)bi j, which in the ma-
trix form reads as f(t) = B(t)C(t)Tθ(t). The flow conserva-
tion law at each bus meets, C(t)f(t) = p(t). Ohm’s law and
flow conservation, along with the power balance constraint
1T p(t) = 0, ends up to finding n−1 unknown voltage phases
assuming the voltage phase of the slack bus generator as zero.
The power of the slack bus adjusts to meet the small fluctu-
ations in the power supply-demand balance in the network.
Specifically, let L(t) = C(t)B(t)CT (t) denote the Laplacian
matrix of the G , i.e., Li j = −bi j if there is a link between i
and j and Lii = ∑ j bi j. The voltage phases are then given by
θ(t) = L†(t)p(t) where L† is the Moore-Penrose inverse of
L. Finally, using Ohm’s law the flow of each line reads as
f(t) = B(t)C(t)T L†(t)p(t).

Each generator has a capacity above which it will shut
down. Also, there is a capacity for line e, ce, and the line
fails if its flow exceeds its capacity. Therefore, the steady-
state lines’ flows are the solutions of the above linear model
subject to many physical constraints. The network is subject
to line failure perturbations in time, e.g., due to lightning or
malfunctioning of relays. After the initial failure, the flows
are redistributed. This may lead to subsequent line failures,
power imbalance, and even network partitioning before the
network settles into a new steady state. This linear flow dis-
tribution and redistribution model in the power grid captures
essential features of the cascade process like a non-additive re-
sponse, non-local propagation, and disproportional impact16

and is used in other works8,17.

B. Data set preparation

We develop a simulator to collect a data set of failure cas-
cading trajectories for given network topology, power genera-
tion and demands at buses, the maximum power of generators,
and the capacity of lines.

The initial flow of each line is computed using the flow dis-
tribution model, assuming all lines are working properly. At
each run, the process starts with randomly removing a small
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random subset of lines in which each line is removed inde-
pendently with probability p f . Next, the new line flows are
recomputed, and if a line’s flow exceeds its corresponding ca-
pacity, that line fails as well, which may trigger other con-
secutive failures. We record the failed lines at each time step
until the network settles at a steady state. The network may
disconnect due to failures and decompose into components.
Therefore, the power balancing of the network or its compo-
nents may be destroyed. We adopt the power re-balancing
strategy explained in18. In this strategy, the small power im-
balance is compensated by ramping up or ramping down the
power generation at generators. Beyond that, we use generator
tripping and load shedding with the priority of small genera-
tors or loads. We simulate and collect M trajectories of failure
cascading on the IEEE-118-Bus network. The required data,
including the network connectivity, the lines’ capacities, and
the maximum generators’ powers, are available in19. The ba-
sic statistics of IEEE-118-Bus network are N = 118, L = 179;
mean degree 〈k〉= 3.034; clustering coefficient C = 0.136.

We perform our experiments on two data sets. We set
p f =

2.5
L in our data collection phase. The first data set D1

consists of M ≈ 52000 unique trajectories with random initial
failure scenarios. Due to the available redundancies, many
initial failures do not propagate. In this data set, 46% of the
initial failures lead to at least one consecutive failure, while
the remaining 54% do not propagate. This data set is used
to infer the interactions in the normal operation of the net-
work. Data set D2 consists of about M ≈ 38000 trajectories
in which all of the initial failures propagate at least one step.
The learned interaction matrix from this data highlights the
indirect interactions in the cascading scenarios.

In the following the state of line i, is denoted by si = ±1,
where si = +1 indicates that the line fails. The state of net-
work is completely determined by s(t) = (s1, . . . ,sL). We
measure the cascade size, Z, in terms of the number of failed

lines, Z =
L
∑

i=1

(1+si)
2 . Note that, although the details of simu-

lations like the power balancing strategy affect the collected
data sets, the main interesting feature of observing heavy tail
distribution in the cascade size remains unchanged. We are
interested in exploiting these data to learn statistical models
which encode the lines’ interactions and use them to infer
lines that fail together, the influential lines, and how the cas-
cade unfolds in time.

III. PAIRWISE AND HIGHER-ORDER INTERACTIONS

This section first explains the pairwise line failure interac-
tion in the power network. We use this prior knowledge in our
learning schemes. Next, we discuss possible higher-order in-
teractions that might be undistinguished by directly observing
the pairwise correlations.

A. Pairwise interactions

For a given pair of lines, the (asymmetric) pairwise inter-
action shows to what extent one line’s failure may lead to
consecutive overload or failure of the other line. Let (a,b)
denote the line between nodes a and b and consider the pair
e = (a,b) and ê = (c,d). Assume e fails. The line outage re-
distribution factor (LODF), Keê, is the ratio of flow changes on
line ê to the initial flow on line e before it was failed provided
that the network remains connected. Keê is independent of the
power injection or demand vector p and only depends on the
underlying weighted graph and can be efficiently computed
deterministically7.

Specifically, Keê depends on the weight of certain spanning
forests in the graph G . In particular, if e and ê are connected
to a common bus we have Keê > 0. That is, the proximity
in the physical network usually implies interactions as we ex-
pected. Alternatively, one could find the pairwise line failure
correlations using a reasonable amount of recorded data or
simulation.

Statistical analysis of the spatial spreading of line failure
cascading based on observed utility data shows that as the
network distance between two lines increases, the probabil-
ity of successive failure is decreased20. The same conclu-
sion is also drawn for the line failure cascading based on the
flow redistribution model in21. Note that we observe phys-
ically far distance but strong interacting line pairs. We use
this prior knowledge to adjust the regularization (penaliza-
tion) factor in learning the interaction structure between lines
assuming that the farther the network distance between the
lines, the less strong the interaction value is. We adopt the
edge distance, de,ê, which was introduced in21 to investigate
the non-local effect of failure cascading. Let dx,y denote the
shortest path length between nodes x and y in G . We have
de,ê = minx∈{a,b},y∈{c,d} dx,y +1. Note that if e and ê are con-
nected to a common bus de,ê = 1.

B. Higher-order interactions

Pairwise statistics of lines’ failures are not sufficient per se
for cascade process analysis if the process involves higher-
order interactions. Higher-order interaction refers to a group
of more than two lines whose simultaneous states affect sys-
tem dynamics.

We provide two illustrative examples to explain these in-
direct interactions and their importance in our subsequent in-
ference and network dynamics. The first one is an example
of third-order interactions among the final states of a selected
group of three lines which are undistinguished by direct ob-
serving pairwise correlations. The second example shows that
we can mitigate the cascade effect by intentionally shutting
down a line to exploit the possible negative interaction be-
tween a specific line group. We use data collected for failure
cascading in power networks in data set D2.

Let i, j, and k denote, receptively, lines (3,5), (7,12), and
(5,6) in the IEEE-118 network19. We are interested in ana-
lyzing the failure statistics of these lines at the final states of
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FIG. 1: (a) The three-way interactions among three selected
lines are shown as a frustrated triplet. The pairwise Pearson
correlation coefficients are shown in the inner triangle. We

show positive interactions in blue and negative interactions in
red. Due to the negative interaction between k and j, we do

not observe a significant correlation between the failures of i
and j. (b) Compared with the initial failure of i (left), the
intentional failure of k′ after the initial failure of i (right)

avoids subsequent failure of k and the following cascading
due to negative interaction between the failure of k and k′.

cascade trajectories. Such analysis is helpful, for example, in
finding co susceptible groups of lines in cascade scenarios.

Assume Cxy denote the Pearson correlation coefficient be-
tween x and y. Using data set D2 we have Cik = 0.94,
Ci j = 0.04, and Ck j = −0.08. See Fig. 1(a). Therefore,
pairwise correlations show that the failure of lines i and k are
strongly correlated, and there is no significant correlation be-
tween the failures of i and j. Now let Cx,y|z denote the cor-
relation between lines x and y given the state of line z. We
have Ci, j|k=−1 = 0.43 and Ci, j|k=+1 =−0.005 where in 23499
final state samples we have k = −1 and for 13575 final state
samples k =+1. If line k does not fail, then there is a signifi-
cant correlation between the final state of i and j, while if line
k fails, there is not. Here, we observe statistically significant
three-way interaction, which is undistinguished by observing
pairwise correlations as the pairwise correlations do not dis-
tinguish different conditional interactions.

Next, let Jxy denote the interaction value for lines x and y
predicted by the learned statistical models in Section IV. The
learned model predicts strong positive bi-directional interac-
tion between i and j and so do k and i, i.e., Ji j,J ji � 0 and
Jki,Jik� 0. However, it predicts strong negative bi-directional
interaction between j and k, i.e., J jk,Jk j� 0. We find that the
weak correlation between the states of i and j roots in the
strong negative interaction between the failure of j and k. In
scenarios in which i and k fail, j did not fail, consistent with
the data. That is in total 13575 final state samples with k = 1 in
13165 samples i and k fail and j did not fail. These third-order
interactions, named the frustrated triplets, are not considered
by simply looking at the pairwise correlations. This example

shows that we can not rely on the naive pairwise correlation
coefficient, for example, to infer the groups of lines that fail
together as some strong interaction might be undistinguished.

Fig. 1(b) shows another example of the importance of find-
ing the higher-order interaction in the cascade dynamics. In
this example we have i = (26,25), j = (30,38),k = (17,18)
and k′ = (18,19). Here we observe how the strong negative
interaction between the failure of line k and k′ can mitigate
the cascade effect. The initial failure event of the line i leads
to overload and failure of the line j. Next line k fails, and we
observe a series of consecutive line failures that fails 12 other
lines. However, if we intentionally fail k′ after the initial fail-
ure of i, we observe that j fails and the process stops. Our
temporal interaction analysis in Section V shows that there is
a strong negative interaction between the failures of k and k′;
suggesting that we can prevent the failure of k and its subse-
quent failures by intentionally failing k′ in this scenario.

IV. STATIC INTERACTION LEARNING

This section is interested in finding the static interaction
graph, i.e., the relationship between a pair of lines’ states at
the final state of cascades called steady states. Recall that no
other failure happens in steady states, and all network con-
straints are met. We note that due to global (e.g., power bal-
ance at each island and maximum power capacity of genera-
tors) and high density of local constraints (e.g., flow conser-
vation rule at each node and flow capacity of each line), the
number of such steady states is limited and is much less than
2L. The outcome of these constraints is that there exist spe-
cific network states that can be learned in terms of effective
pairwise interactions in which one can learn the line i state, si,
given the states of its influential neighbors ∂i, s∂i . The static
interaction graph helps us understand which links tend to fail
together and find co-susceptible groups. Also, we can recon-
struct these final states using Glauber dynamics as discussed
in IV B.

Also, note that according to the nature of the power net-
works, the desired interaction matrix is not symmetric in gen-
eral. Consider lines e and ê which, respectively, connect a
generator and a load to the network in a nearby neighborhood.
The network is subject to tight constraints after e fails, which
probably leads to ê failure. The failure of ê, on the other hand,
makes the constraints lose and provide more slack power for
the network.

A. Logistic regression model

Let single out link i and assume that we have other links’
states at time t denoted by s−i(t). We can find (hi,{Ji j, j 6=
i}) such that the probability that link i at t + 1 is at proper
state consistent with the data (constraints) is maximized where
Ji j is the influence of line j on line i and hi is a local factor.
Specifically, let the state of link i be related to other links’
states according to
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Pr(si(t +1)|s−i(t)) =
1
2
[1+ si(t +1) tanh(Hi(t))] (1)

=
1

1+ e−2si(t+1)Hi(t)
,

Hi(t) = hi +∑
j 6=i

Ji js j(t).

Equ.(1) is a logistic regression estimator for si conditioned
on other links’ states as the most widely used multivari-
ate nonlinear statistical model. We should find (hi,Ji) by
maximizing the log-likelihood function of observing M in-
dependent si(t + 1) given s−i(t) over the data by (h∗i ,J∗i ) =
argmax(hi,Ji)

LD(hi,Ji) where

LD(hi,Ji) =
1
M

ln
M

∏
m=1

Pr(si(t +1)|s−i(t))

=

〈
ln

1

1+ e−2si(t+1)(hi+∑ j 6=i Ji js j)

〉
D
. (2)

Ji is the ith row of interaction matrix and 〈 f (s)〉D =
1
M ∑

M
m=1 f (s(m)) with data set D = {s1, . . . ,sM}.

In practice, however, link i does not effectively interact with
all other links, and we are interested in finding a sparse solu-
tion in which the state of each link is presented in terms of
explainable interactions that the physics of the problem dic-
tates. In the l1-regularized learning technique, to avoid find-
ing spurious meaningless interactions, the penalizing term is
added to the objective function of (2) considering the prior
knowledge of the interactions. This penalizing term leads to
set un-explainable interactions to zero.

Let ∂i denote the neighbors of link i, i.e., the set of other
lines with them i has effective interaction. In22 the au-
thors show that reconstruction of the interaction structure and
strength is possible with a two-stage algorithm. In the first
stage, we find the underlying graphical model by ruling out
the weak interactions and finding the explanatory neighbor
variables, ∂i,∀i. In this regard, we first solve L independent
optimization problems as

(h0
i ,J

0
i ) = argmax(hi,Ji)

LD(hi,Ji)−λ ∑
j 6=i
|di jJi j|, (3)

where λ is a regularization parameter and di j is the distance
between line i and j according to definition in subsection III A.
Here, we use the prior knowledge that the physically adjacent
lines show greater interaction absolute value and hence less
penalize the corresponding interaction in the optimization ob-
jective. Then all weak interactions with −δm < Ji j < δp are
set to zero, where δm,δp > 0 are proper thresholds.

In the second stage, having the interaction structure, we find
the interaction strength (h∗i ,J∗i ) by solving (3) again with λ =
0. Note that we may end up with weak but important coupling
at the end of the procedure.

Choosing the appropriate λ is related to the graphical
model reconstruction problem and should be tuned for the in-
ference problem. Assuming no other prior information, this

parameter is related to the number of samples M, number of
variables, L, and the accepted error in interaction graph re-
construction ε , by λ ∝

√
ln(L2/ε)/M22. δp and δm are then

selected by inspecting the histogram of Ji values near zero and
identifying the gaps in the density of interaction strengths.

Note that by proper selection of λ ,δp,δm we can trade off
the goodness of fit to data for the model complexity or finding
a sparse interaction matrix. Also, the l1-regularized logistic
regression in (3), is the conditional maximum entropy infer-
ence of si(t + 1) given si(t), and benefits from the learning
guarantees of this model23.

Computing the derivative of LD(hi,Ji) with respect to hi
and Ji j, at the optimal point, we have

〈si〉D ≈

〈
tanh(h∗i + ∑

k∈∂i

J∗iksk)

〉
D

(4)

〈
sis j
〉

D ≈

〈
s j tanh(h∗i + ∑

k∈∂i

J∗iksk)

〉
D

which can be used as a measure of goodness of fit.
Learning (h∗,J∗), we can use a dynamics which updates

one link (spin) at each time step according to (1) to find
steady states. The Glauber dynamics is widely used in sta-
tistical physics for describing a single site dynamics and find-
ing the equilibrium and non-equilibrium Ising models. The
Glauber process starts with a random initial site configura-
tion. Next, at each time step one site is selected randomly, say
i, and updated, i.e., si(t + 1) takes value one with probabil-
ity Pr(si(t +1) = 1|s−i(t)) = 1

1+e
−2
(

hi+∑ j∈∂i
Ji j s j(t)

) . In the next

subsection, we show that the Glauber dynamics can success-
fully reconstruct the network steady states using the learned
interaction matrix.

B. Interactions at steady states

Since multiple initial failures may lead to the same steady
state we first remove the final duplicate states in each data
set. In the learning procedure, we use λ1 = 0.0001 and λ2 =
0.0005 for data sets D1 and D2. Also, we set δm = δp = 0.1
to learn (hi,Ji) for all i. The maximum edge distance for the
IEEE-118 network is 15.

The optimization problem in (3) is convex and hence has
a unique global optimum. However, the objective function is
not differentiable if λ 6= 0. Therefore, in the first stage of the
algorithm, we use proximal gradient descent, which shrinks
the non-explanatory variable to zero in the projection step to
find (h0

i ,J
0
i ) for each i.

Using the selected parameters, we find sparse interaction
matrices. The ratios of non-zero elements in J∗1 and J∗2 to all
possible L(L−1) interactions are 6.5% and 5.8%.

Figs. 2a and Figs. 2c show goodness of fit for the estimated
〈si〉 and

〈
sis j
〉

reconstructed from Equ.(4) against the values
computed from the corresponding data set where 〈si〉= 〈sir0〉
with r0 = 1. The figures show that the learned models fits to
the corresponding data. Also, we notice that using data set
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D1 we observe only positive
〈
sis j
〉

for pairwise interactions.
However, in data set D2, we have pairs of links with

〈
sis j
〉
≤ 0

which means we have lines i and j with si =−s j, i.e., only one
of them fails in steady state. This observation is the effect of
indirect interactions in severe cascading scenarios which is not
observed in the normal operation of a power system. Its phys-
ical meaning shows that the network partitions in cascading
scenarios.

We can consider the power network as a system that works
in a steady state and is subject to random perturbations due to
line failures. The initial failure may cascade until the network
settles down in a new steady state. Using the learned interac-
tions, we can update the states of other lines using Glauber dy-
namics. The Glauber dynamics uses the learned interactions
to update the state of a single line considering the states of oth-
ers until it settles down in a steady state in which it remains
for a long time. Therefore, we should observe the steady states
much more than transient ones in a long run of updates. We
use Glauber dynamics to sample these steady states and com-
pare the statistics of these samples against the data to show the
predictive performance of the learned interaction matrix. We
consider the statistical steady states of the Glauber dynamics
as the final states of cascade samples.

We generate M samples using the Glauber dynamics start-
ing from a random initial s(0) in which each state sets uni-
formly +1 or −1 with probability 0.5. Therefore, the Glauber
dynamics starts with an initial state far from the network’s
steady states used in the training phase, and we need many
updates in the Glauber dynamics.

We set the warm-up time to 103L in Monte Carlo simula-
tions and the Monte Carlo step to 20L between sampling. Fig.
2b and Fig. 2d, show the 〈si〉 and

〈
sis j
〉

from these samples
against the values in corresponding data sets. Our extensive
numerical study shows that the reconstruction of weak (near
zero) and negative

〈
sis j
〉

from the Monte Carlo samples is
very hard and corresponds to sampling rare events from a dy-
namical system. This observation also emphasizes that relying
on just positive correlations between the line failure is insuffi-
cient to understand the system’s behavior in large cascades.

To evaluate the predictive capability of the model, we next
compare the complementary cumulative distribution function
(CCDF) of cascade size, PZ , for steady state configurations in
the Monte Carlo (MC) samples against the data in Fig. 3a and
Fig. 3c. The maximum cascade size, the maximum number
of failed links, in the data sets are Zmax

D1
= 84 and Zmax

D2
= 85

and in the MC samples are Zmax
MC1

= 66 and Zmax
MC2

= 79. As ex-
pected, the model learned with more extreme samples better
captures the link states in the cascading scenarios. The inset of
the figures compares binned probability of the cascade size in
which we plot pZ(z) = Pr(z≤ Z ≤ z+∆z) with ∆z = Zmax

D
20 for

the MC samples against the values in the corresponding data
set. We note that the density function of cascade size, pZ(z)
spans three orders of magnitude, indicating the power-law dis-
tribution at the tail. Also, the model successfully generates
samples whose density function spans this range.

In another predictive experiment, we generate new 5000
failure trajectories independently of the training data sets and
evaluate how the learned model predicts the state of a spe-
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FIG. 2: Reconstructed 〈si〉 and
〈
sis j
〉

against the actual
values from data (a,c) reconstructed by applying the learned

parameters on the data set D1 and D2, and (b,d) using the
Monte Carlo samples drawn from Glauber dynamics for data

sets D1 and D2.

cific link given the others’ states. For each new sample, we
select a link with state +1 or −1 with the probability of 0.5.
We then predict the selected link’s true state probability using
the model, assuming that the other links’ states are available.
Also, we perform the same experiment when we add perturba-
tion to the given states by randomly selecting two neighbor-
ing links of the selected link and intentionally flipping their
states. Fig. 3b and Fig. 3d show the corresponding Receiver
Operating Characteristics (ROC) curves for data sets D1 and
D2. The ROC curve shows the predictor’s performance by
depicting the true positive rate against the false positive rate
for different thresholds. The models fairly predict the true
failure probability of the selected links. The decrease in the
ROC’s AUC (area under the curve) with perturbations shows
the model’s sensitivity to perturbing explanatory variables.

C. Inference using interaction matrix

In this section, we use the static interaction matrix to in-
fer some structural properties of the network. We study the
regularities in the interaction graph, G̃ , which corresponds to
the interaction matrix J to find links that fail together. G̃ is a
weighted, signed, and directed graph with L nodes in which a
link i→ j shows that line i affects the state of the line j.

We are interested in finding co-susceptible groups of lines
that tend to fail together statistically. We use the Infomap24

as an appropriate algorithm with proper weights for each in-
teraction to find clusters of nodes with the same states in dif-
ferent network steady states. Infomap is a flow-based cluster-
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FIG. 3: (a,c) CCDF of the cascade size from the data sets and
the MC samples, the inset compares the binned probability of
the cascade size for the MC samples against the values in the

corresponding data set. (b,d) The ROC for predicting the
state of a selected link without and with two neighbor links

state flipping.

ing mechanism that finds the organization based on the real
flow of interactions in the underlying network. Here, we use
Infomap to capture the desired failure propagation dynamics
(flow) in our directed, and weighted interaction graph25.

We first convert the interaction values to proper positive
weights, which the random walker subsequently uses in the
network as a proxy of failure flow in the network. Let
pi = Pr(si = +1 | s∂i) where we remove time dependency
for short writing. In the binary logistic regression learning we
find (h∗i ,J∗i ) such that log pi

1−pi
= 2(h∗i +∑ j∈∂ i J∗i js j), i.e., we

find the log-odds of line i failure in terms of the explanatory
neighboring links’ states. Now, assume the random walker is
at node j ∈ ∂i of G̃ . The state of node j contributes in node i’
state according to [J]i j. Let p+i j = Pr(si = +1 | s j = +1,s∂i\ j)

and p−i j = Pr(si = +1 | s j = −1,s∂i\ j). Using (1) we observe
that26

e4Ji j =
p+i j(1− p−i j)

p−i j(1− p+i j)
. (5)

We can interpret p+i j as the probability of failure flow from

j to i for a given s∂i\ j where
p+i j

1−p+i j
is the corresponding odds.

Correspondingly, p−i j is the probability of failure flow from i’s
neighbors except j to i. The ratio

[
p+i j/(1− p+i j)

]
/
[
p−i j/(1−

p−i j)
]

is a good measure for the share of failure flow from j to
i. Therefore, we assign e4Ji j as the weight of link j→ i in G̃ .

If Ji j is sufficiently positive, then p+i j � p−i j and if Ji j is
sufficiently negative p+i j � p−i j . Note that weak coupling Ji j ≈
0 means p+i j = p−i j and as expected does not contribute much in
clustering process. We run the two-level Infomap clustering
algorithm on data sets D1 and D2 and sort the clusters based
on their sizes. The nodes of G̃ (lines of G ) belong to the same
cluster, then get sequential indices.

Fig. 4 shows the results for both data sets where we sort
clusters according to their sizes and assign consecutive indices
to lines in the same clusters. Infomap finds 8 and 15 clusters
with cluster size greater than two for D1 and D2. The models
suggest that there exists a clustering structure in the line fail-
ure in both data sets. As expected, the nearby lines are mostly
in the same cluster. We, however, observe distant lines which
are grouped in the same cluster. Furthermore, the clustering
result for data set D2 shows more distinctive clusters roots to
line pairs with

〈
sis j
〉
≈ 0.

Let random variable ZC = ∑ j∈C
(1+s j)

2 denote the num-
ber of failures in a final steady-state cascading trajectory for
cluster C . We compute Pr(ZC = z |ZC > 0) by marginalizing
over the other lines’ states in the data set to find to what extent
the failure of one line in the group leads to other lines’ fail-
ures in this group. The null hypothesis is to select a subset of
lines randomly and uniformly, R, with the same cardinality,
i.e., |C | = |R|, and compute the same measure. The ratio of
γ = E [ZC =z |ZC >0]

E [ZR=z |ZR>0] then shows the effectiveness of the cluster-
ing method against the null hypothesis. Here E denotes the
expectation value of the desired co-failure measure. Fig. (4c)
and Fig. (4d) show the distribution of the γ values for 200 ran-
dom samples as a box plot chart for cluster sizes greater than
four, where the triangle token shows the mean and the hori-
zontal bar in each box is the median of samples. We observe
that except for one cluster in data set D2, the mean values
of the co-susceptibility measure γ in the Infomap clusters are
approximately one order of magnitude greater than the null
hypothesis.

V. TIME SERIES INTERACTION MODELING

The objective of this section is to learn how the states of
links change over time. Instead of updating a specific link
state near the steady states, we find the interaction matrix that
encodes how the cascade unfolds in the network. The im-
portance of this problem is to design mitigation strategies for
power networks.

Each trajectory in our data sets captures the sequence of
all link states until the network settles in a steady state.
Therefore, each trajectory is a time series of links’ states
s(0),s(1), . . .s(tss) where tss is the time that failure propaga-
tion ends. The next state of the final steady state is itself,
s(tss +1) = s(tss) means that no more updates happen for this
current state in the learning. For each data set we remove pos-
sible duplicate trajectories due to the same initial failure, and
find T = ∑

M0
j=1 1+ t j

ss consecutive network’s state.
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FIG. 4: (a,b)-heat map of the interaction matrix when lines
are grouped and reindexed sequentially based on the Infomap

clustering of the corresponding interaction graph G for (a)
data set D1 (b) data set D2. the thin dashed lines separate

different clusters. (c,d)-the box plot of the γ values where the
triangle token shows the mean and the horizontal line in each
box shows the median for (c) data set D1 and (d) data set D2

A. Logistic regression model

We adopt the kinetic Ising model with asynchronous
updates27. In this model, at each time step the state of each
link is updated with the probability given in (1) which can
be read as Pr(si(t + 1)|s−i(t)) = esi(t+1)Hi(t)

2coshHi(t)
. Note that the de-

ployed model and data sets of steady states in the previous
section can be considered as one step kinetic Ising model. The
log likelihood function is

LD(h,J) =
1
T

T−1

∑
t=1

L

∑
i=1

[
si(t +1)Hi(t)− ln2cosh(Hi(t))

]
.

(6)

The objective is finding (h,J) which maximize the desired
l1-regularized function

(h∗,J∗) = argmax(h,J)LD(h,J)−λ ∑
j 6=i
|di jJi j|, (7)

In contrast to the previous section in which we solve an
optimization problem for each link independently, we should
find (h,J) in an optimization problem over L2 variables. Like-
wise, we follow a two-stage algorithm in the previous section
to find the most explanatory interactions and fine-tune them.
Since these are convex optimization problems, there are very
efficient numerical methods to solve these problems. We use
the naive gradient descent method to find the solution.

Computing the derivative of the likelihood function we
have:
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FIG. 5: Reconstructed 〈si(t)〉 and
〈
si(t)s j(t +1)

〉
against the

actual values from data sets for (a) data set D1 (b) data set D2.

∂L

∂hi
=

1
T

T−1

∑
t=0

[
si(t +1)− tanh(Hi(t))

]
(8)

∂L

∂Ji j
=

1
T

T−1

∑
t=0

s j(t)
[
si(t +1)− tanh(Hi(t))

]
. (9)

Therefore, at the optimal point we have 〈si(t)〉tD =

〈tanh(Hi(t))〉tD and
〈
si(t)s j(t +1)

〉t
D =

〈
s j(t) tanh(Hi(t))

〉t
D

where 〈 f (s(t))〉tD = 1
T ∑

T−1
t=0 f (s(t)) which used as a goodness

of fit measure.

B. Time series interactions

We set the same parameter values for λ and δ as the steady
state analysis in order to find the corresponding (h,J) for each
data set. Fig. 5 shows that the model appropriately recon-
structs 〈si(t)〉 and

〈
si(t)s j(t +1)

〉
.

The next step is to measure how the learned model pre-
dicts the failure unfolding in time. Here, we should select a
threshold for binary decision-making at each step based on
each line’s predicted probability. We update the network state
at each step and find consecutive network states in the time
horizon. Note that the possible prediction error at the current
time step will propagate to the consecutive time step predic-
tions. Also, one should select the proper threshold for each
line to improve the overall predictions. Here, we select the
same threshold for all lines and use the model to predict the
network state for the time horizon equals the corresponding
trajectory’s actual steps before settlement.

We find the consecutive network states for different thresh-
old values and compare the predicted set of failed lines against
the ground truth for 1000 independent trajectories of failure
cascading. We compute the corresponding true positive and
false-positive rates and find the ROC curve. Here false posi-
tive is predicting a line failure against the ground truth. See
Fig. 6a. We repeat this experiment over another 1000 trajecto-
ries that last at least six-time steps to see how well the consec-
utive line failure prediction works—the corresponding ROC
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FIG. 6: (a,b)-the ROC curves for predicting the network state
from the data and the model in time horizon compared to the

ground truth trajectory for data set D2. (c,d)-CCDF of the
cascade size where the insets compare the binned probability
of the cascade size for the model against the values of data.

In (a,c), the time horizon is equal to the actual trajectory, and
in (b,d) until no new updates happen in the network’s state.

curve named as long-trajectories in Fig. 6a. We find similar
results for data set D1.

We provide the corresponding CCDF of cascade size, PZ ,
for the model final state against the data in Fig. 6c. As in
previous section, the inset of Fig. 6c compares binned proba-
bility of the cascade size in which we plot pZ(z) = Pr(z≤ Z ≤
z+∆z) with ∆z = Zmax

D
20 for the model against the values in the

corresponding data set which spans three orders of magnitude.
Finally, we repeat these experiments in the time horizon

until no update happens in the network’s state. Fig. 6b and
Fig. 6d shows the corresponding ROC curve and the CCDF.
These results show that the learned dynamic interaction ma-
trix successfully predicts the network’s state in consecutive
time steps until settlement at the final steady-state.

VI. CONCLUSION AND FUTURE WORKS

Data-driven machine learning techniques can help bet-
ter understand the complex dynamics of failure cascading
in power networks, which involves higher-order interaction.
We use regularized logistic regression-based machine learn-
ing tools to learn statistical models that capture pairwise and
higher-order interactions of line failure cascading caused by
line overloads and islanding in the linearized DC power flow
model in power networks. The static model captures line fail-
ure interactions at the network’s steady states by maximiz-

ing the likelihood of observing each line state given the other
lines’ states. We use this model to reconstruct the network’s
steady states, infer the cascade size statistics, and find co-
susceptible line groups that fail together. The dynamic model
learns the lines’ states over the trajectories of failure cascad-
ing and can successfully predict the failure unfolding in the
network. The results show that the machine learning approach
and inference can help predict the final states of cascading and
failure unfolding in power networks. The approach has the
potential to be applied to other networked systems that might
encounter similar failure phenomena. We will use these mod-
els to design cascade mitigation mechanisms in future works.
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